Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association.

نویسندگان

  • M T Yip-Schneider
  • W Miao
  • A Lin
  • D S Barnard
  • G Tzivion
  • M S Marshall
چکیده

The Raf-1 kinase domain is kept in an inactive state by the N-terminal regulatory domain. Activation of the kinase domain occurs following release from the N-terminal repression and possible catalytic upregulation. To distinguish the regulatory mechanisms that directly influence the catalytic activity of the enzyme from those which act through the inhibitory domain, the catalytic domain of Raf-1 (CR3) was expressed in COS-7 cells. The role of phosphorylation in the direct regulation of this domain was determined by substituting non-phosphorylatable amino acids for known serine and tyrosine phosphorylation sites. The intrinsic activity of each mutant protein was determined as well as stimulation by v-Src and phorbol esters. Both v-Src and phorbol esters were potent activators of CR3, requiring the serine 338/339 (p21-activated protein kinase, Pak) and tyrosine 340/341 (Src) phosphorylation sites for full stimulation of CR3. In contrast, loss of the serine 497/499 protein kinase C phosphorylation sites had little effect on CR3 activation by either v-Src or phorbol esters. Loss of serine 621, a 14-3-3 adaptor-protein-binding site, prevented activation of CR3 by v-Src or phorbol esters and partially decreased the high basal activity of the kinase fragment. When co-expressed in COS-7 cells, 14-3-3 associated strongly with full-length Raf-1, weakly with wild-type CR3 and not at all with the A621 and D621 CR3 mutants. The role of 14-3-3 in maintaining the activity of the catalytic domain of Raf-1 was investigated further by performing peptide-competition studies with wild-type CR3, wild-type CR3 and v-Src or constitutively active CR3 (CR3[YY340/341DD]). In each case, incubation of the proteins with a phosphoserine-621 Raf-1 peptide, which we show displaced Raf-1 and CR3[YY340/341DD] from 14-3-3, was found to substantially reduce catalytic activity. Taken together, our results support a model of Raf regulation in which the activity of the Raf-1 catalytic domain is directly upregulated by phosphorylation, following relief of inhibition by the N-terminal regulatory domain upon Ras-GTP binding. Moreover, the presence of serine 621 in the free catalytic fragment is required for full CR3 activation by stimulatory factors, and the continuous presence of 14-3-3 at this site is necessary for retaining activity once the kinase is activated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation.

14-3-3 Proteins may function as adapters or scaffold in signal-transduction pathways. We found previously that protein kinase C-zeta (PKC-zeta) can phosphorylate and activate Raf-1 in a signalling complex [van Dijk, Hilkmann and van Blitterswijk (1997) Biochem. J. 325, 303-307]. We report now that PKC-zeta-Raf-1 interaction is mediated by 14-3-3 proteins in vitro and in vivo. Co-immunoprecipita...

متن کامل

Raf-1 activation disrupts its binding to keratins during cell stress

Keratins 8 and 18 (K8/18) heteropolymers may regulate cell signaling via the known K18 association with 14-3-3 proteins and 14-3-3 association with Raf-1 kinase. We characterized Raf-keratin-14-3-3 associations and show that Raf associates directly with K8, independent of Raf kinase activity or Ras-Raf interaction, and that K18 is a Raf physiologic substrate. Raf activation during oxidative and...

متن کامل

14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity.

By binding to serine-phosphorylated proteins, 14-3-3 proteins function as effectors of serine phosphorylation. The exact mechanism of their action is, however, still largely unknown. Here we demonstrate a requirement for 14-3-3 for Raf-1 kinase activity and phosphorylation. Expression of dominant negative forms of 14-3-3 resulted in the loss of a critical Raf-1 phosphorylation, while overexpres...

متن کامل

sub-optimal concentrations of IL-3 in inducing long-term cell proliferation, but did not augment proliferation of cells cultured with full concentrations of IL-3. EPO induced a rapid activation of ERK and also phosphorylation of endog-

The Raf/MEK/ERK pathway is thought to be critical in mediating cell survival and proliferation by cytokine receptors. However, the exact contribution of Raf is complex and not well understood. A better understanding of Raf signaling is important because of the recent observation that B-Raf is frequently mutated in various human cancers. We have generated a new model system that activates Raf di...

متن کامل

Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak

Activation of the protein kinase Raf-1 is a complex process involving association with the GTP-bound form of Ras (Ras-GTP), membrane translocation and both serine/threonine and tyrosine phosphorylation (reviewed in [1]). We have reported previously that p21-activated kinase 3 (Pak3) upregulates Raf-1 through direct phosphorylation on Ser338 [2]. Here, we investigated the origin of the signal fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 351 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2000